

Reg. No):				
S	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR				
(AUTONOMOUS) B.Tech III Year I Semester Regular Examinations November 2018					
	FORMAL LANGUAGES AND AUTOMATA THEORY				
Time: 3	(Computer Science & Engineering) hours Max. Marks: 60				
Time: 5	(Answer all Five Units $5 \times 12 = 60$ Marks)				
	UNIT-I				
1 a	Construct equivalent DFA for the following ϵ -NFA				
- •					
	$\underbrace{\operatorname{start}}_{q_0}$ $\stackrel{a}{\longrightarrow}$ (q_1) $\stackrel{\epsilon}{\longrightarrow}$ (q_2) $\stackrel{a}{\longrightarrow}$ (q_3)				
	q_0 q_1 q_2 q_3 b				
		8M			
k	b List out the applications of finite state machines.4	4M			
2 a	OR a Specify the procedure for Myhill- Nerode theorem with an example.	8M			
		4M			
	UNIT-II				
		5M 7M			
L	• Prove that the language $L = \{a^n b^n c^n n \ge 1\}$ is not regular. OR	7M			
_		8M			
ł		4M			
5 a	UNIT-III Convert the following grammar into Greibach normal form.				
5 0	S→AA/a				
ŀ		7M 5M			
	OR	2111			
6 a	a Consider the following CFG.	7M			
ł	$S \rightarrow aSbS/bSaS/\epsilon$ and find the language accepted by the grammar. Define left recursion and how do you eliminate it from the grammar.	5M			
~	UNIT-IV				
7 a	a Construct PDA to accept the set of strings over {a,b} consisting of equal number of	8M			
ŀ	a's and b's.	4M			
L.	OR	T 1 VI			
8 a	Construct PDA from the following Grammar				
	$S \rightarrow 0BB$ $B \rightarrow 0S/1S/0$	8M			
k		4M			

UNIT-V

9	a	Define Post's correspondence problem and explain with an example.	7M
	b	What is Universal Turing machine? Discuss.	5M
		OR	
10	a	Design a Turing machine which multiplies two unary numbers.	8M
	b	Draw and explain the transition diagram for Turing machine.	4M

*** END ***